3.523 \(\int \frac {\cos ^3(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=215 \[ -\frac {2 a \left (8 a^2+7 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (8 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {8 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 b^2 d}+\frac {2 \sin (c+d x) \cos (c+d x) \sqrt {a+b \cos (c+d x)}}{5 b d} \]

[Out]

-8/15*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b^2/d+2/5*cos(d*x+c)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d+2/15*(8*a
^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2)
)*(a+b*cos(d*x+c))^(1/2)/b^3/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/15*a*(8*a^2+7*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2
)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b^3/
d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2793, 3023, 2752, 2663, 2661, 2655, 2653} \[ -\frac {2 a \left (8 a^2+7 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (8 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {8 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 b^2 d}+\frac {2 \sin (c+d x) \cos (c+d x) \sqrt {a+b \cos (c+d x)}}{5 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*(8*a^2 + 9*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(15*b^3*d*Sqrt[(a + b*Cos[c
 + d*x])/(a + b)]) - (2*a*(8*a^2 + 7*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a +
 b)])/(15*b^3*d*Sqrt[a + b*Cos[c + d*x]]) - (8*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(15*b^2*d) + (2*Cos[c
+ d*x]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*b*d)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2793

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d
*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a*d
*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n -
 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] ||
 (EqQ[a, 0] && NeQ[c, 0])))

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {2 \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 b d}+\frac {2 \int \frac {a+\frac {3}{2} b \cos (c+d x)-2 a \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{5 b}\\ &=-\frac {8 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b^2 d}+\frac {2 \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 b d}+\frac {4 \int \frac {\frac {a b}{2}+\frac {1}{4} \left (8 a^2+9 b^2\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{15 b^2}\\ &=-\frac {8 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b^2 d}+\frac {2 \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 b d}-\frac {\left (a \left (8 a^2+7 b^2\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{15 b^3}+\frac {\left (8 a^2+9 b^2\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{15 b^3}\\ &=-\frac {8 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b^2 d}+\frac {2 \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 b d}+\frac {\left (\left (8 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{15 b^3 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a \left (8 a^2+7 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{15 b^3 \sqrt {a+b \cos (c+d x)}}\\ &=\frac {2 \left (8 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a \left (8 a^2+7 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \cos (c+d x)}}-\frac {8 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b^2 d}+\frac {2 \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.91, size = 182, normalized size = 0.85 \[ \frac {b \sin (c+d x) \left (-8 a^2-2 a b \cos (c+d x)+3 b^2 \cos (2 (c+d x))+3 b^2\right )-2 a \left (8 a^2+7 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+2 \left (8 a^3+8 a^2 b+9 a b^2+9 b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*(8*a^3 + 8*a^2*b + 9*a*b^2 + 9*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)
] - 2*a*(8*a^2 + 7*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + b*(-8*a^2 +
 3*b^2 - 2*a*b*Cos[c + d*x] + 3*b^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(15*b^3*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 1.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^3/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^3/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.82, size = 665, normalized size = 3.09 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-4 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-48 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-8 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b +6 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}+30 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-8 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}+8 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-8 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b +9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{3}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \,b^{2}-6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3}\right )}{15 b^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*cos(1/2*d*x+1/2*c)^7*b^3-4*cos(1/2*d*x+1
/2*c)^5*a*b^2-48*cos(1/2*d*x+1/2*c)^5*b^3-8*cos(1/2*d*x+1/2*c)^3*a^2*b+6*cos(1/2*d*x+1/2*c)^3*a*b^2+30*cos(1/2
*d*x+1/2*c)^3*b^3-8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-7*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2+8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c
)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((
2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2
))*a*b^2-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),(-2*b/(a-b))^(1/2))*b^3+8*cos(1/2*d*x+1/2*c)*a^2*b-2*cos(1/2*d*x+1/2*c)*a*b^2-6*cos(1/2*d*x+1/2*c)*b^3)/b^
3/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a
+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^3/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^3}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^3/(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________